

TELEMATICS Feature Extraction & Predictive Modelling

Ignace Fets

Promotor: Prof. Tim Verdonck

Content

What

- 1. What are Telematics Features?
- 2. Describing Allianz Telematics Data

Why

3. Why are Telematics Features Useful in General?

How

- 4. Telematics Analytics
 - → Quantitative Data Analysis

1. What are Telematics Features

- Insurance company monitors your driving habits
- Several possible technologies:

Black-Box

Phone App

Plug-In Device

- Huge amount of collectable data:
 - A. Policyholder: Age, Sex, Individual/Professional, etc
 - B. Driving Behaviour: Speed, Acceleration, Cornering, etc.
 - C. External Data (Restaurants, Sport Clubs, etc.)

2. Describing Allianz Telematics Data

Allianz Bonus Drive Application

Captures Both:

- 1. Pay-As-You-Drive:
 - = How much you drive
- 2. Pay-How-You-Drive:
 - = When you drive
 - = Where you drive
 - = <u>How</u> you drive

2. Describing Allianz Telematics Data

3. Why are Telematics Features Useful?

Individual Tailored Price

Fair Price ~ Driving Behaviour

Improving Driving Skills + Possibility Cheaper Insurance for Young Drivers

More Insights in Customer Behaviour + Increasing Predictive Power

"A great business at a fair price is superior to a fair business at a great price."

Charlie Munger

4. Telematics Analytics: Descriptive Analysis

Visually:

Difficult to Assess a Drivers Risk

• Table:

Variable	Driver 1	Driver 2	Driver 39	Driver 2719
Total Distance (km)	842.09	1619.56	1294.98	2267.68
Average Distance Per Trip (km)	4.21	8.10	6.47	11.34
Total Time (h)	32.4	40.21	40.72	38.13
Average Time Per Trip (min)	9.73	12.06	12.22	11.44
Average Speed Per Trip (km/h)	25.81	39.98	31.78	59.39
Average Acceleration Per Trip (m/s^2)	-0.005	-0.007	-0.01	-0.006

4. Telematics Analytics: Constructing Heatmaps

Speed Buckets

Heatmap

4. Telematics Analytics: Comparing Heatmaps

Ultimate Goal:

Use These Heatmap Features in the Insurance Pricing Process

Problem:

Too Many Features Created

Solution:

Heatmap Dimension Reduction

4. Telematics Analytics: Dimension Reduction

The R Code Alive: Shiny Application

Short screen recording of each step discussed above:

- 1. Descriptive Analysis
- 2. Heatmap Construction
- 3. Dimension Reduction
- 4. Performance Dimension Reduction

Ħ

PART 1

▼ Descriptive Analysis

Heatmaps

*** K-Means

Random-Forest

O PCA

↔ Comparing

→ Comparing-Analytical

■ Click to Close Application

Heatmaps

Heatmap Approximation PCA vs. NN Heatmaps Choose a driver: Choose a speed bucket: Choose number of components: Choose hidden structure NN: *** K-Means (0,5](10,q,10)Random-Forest 0.9 O PCA v-a heatmap of driver 1 6e-04 → Comparing 5e-04 acceleration in m/s^2 4e-04 ■ Click to Close Application 3e-04 - 2e-04 1e-04 speed in km/h v-a heatmap approx. by 1 comp. for driver 1 (Robust Alpha = 0.9) 6e-04 5e-04 acceleration in m/s^2 4e-04

speed in km/h

Choose robustness parameter: ○ 0.5 0.7

- **→** Geo Map
- <u>◆</u> Heatmap
- S&A Plots
- A Overview Trip
- Overview Driver
- Dim Reduction Heatmap
- ☐ Click to Close Application

Map of the Trips

4. Telematics Analytics: Prediction of Accidents

Prediction of Accidents

- Used Classifiers:
 Logistic Regression, Naïve Bayes, CART,
 Random Forest, Boosted Trees, ...
- Performance Measure:

 10x10 Cross Validation of
 Precision-Recall AUC values
- Implemented all analyses myself in R
- + Application To Visualize Power of Telematics

Summary and Conclusion

Belgium Market

Future Potential and Growth Possible

→ More and more Data Analytics

Sector & LoB

Financial Sector in general needs to adapt to the fast & changing "Tech-Environments"!

→ MTPL in Insurance

Telematics

Fair Pricing ~ Driving Behaviour

→ PAYD + PHYD

Key Advantage Insured

Increases Predictive Power

→ Also Extensions and Other Analytics

Key Advantage Insurer

Thanks for Your Attention

