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VOLATILITY IS NOT CONSTANT

Observed volatility of stock returns is not constant but varies randomly with time :

- Black & Scholes model inaccurate !

- Historical volatility S&P500 : - Implied volatility S&P500 :
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ATM VOLATILITY SKEWS : POWER-LAW
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> In red, power-law function: ¥(7) = A7"*.

- In black, ATM volatility skew estimated for the S&P500, 6th July



HESTON AND BATES MODELS

= Under a risk-neutral measure IP*, the Heston model is given by:
dSt St rdt + St \/_ dW*
dv; = k() — v) dt + 0/v; AW

with v the variance process and W*, W* two correlated Brownian motions under P*.

= Under [P the Bates model is given by:

ds
stt (r — X&) dt + Jor AW + (Y; — 1) dNy

dur =Kk (n —vg)dt + 0/v¢ th*

with N; ~ Poi(A¢)and log(¥;) ~ N(uj,02)




HESTON AND BATES MODELS

ADVANTAGES :
- Incorporate mean-reverting stochastic volatility.

- Characteristic function in closed-form = fast and efficient calibration.

DRAWBACKS :

- Implied volatility not realistic under these two models.

- Cannot reproduce the memory properties of the observed historical volatility.
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FRACTIONAL BROWNIAN MOTION (fBm)

A fractional Brownian motion (BtH)tZO is a Gaussian process iif :

1
Cov(B', B) = B(B{'B,) = Z{t*"+s"" —|t—s|""} E ((B{")°)

= Depends on the parameter H € (0,1), called the Hurst index.

= Stationarity of increments.

= Increments are positively correlated if H > 1/2, negatively correlated if H < 1/2 and independentif H = 1/2:

W/\Wﬂ

Fractional Bm : H < 1/2 ClassicalBm: H = 1/2 Fractional Bm: H > 1/2




FRACTIONAL BROWNIAN MOTION - INCREMENTS

= The process of increments of the fBm ABf= B — Bf! | is said to have :

- Long memoryfor H > 1/2
- Short memoryfor H < 1/2

- One-to-one correspondance with the regularity of fBm trajectories.

= AB{!is called a fractional Gaussian noise

—> Basis of fractional mean-reverting process (RFSV model).



ROUGH STOCHASTIC = (Classical stochastic volatility models
VOLATILITY
MODELING = Fractional Brownian motion
= RFSV model
rBergomi

Rough Heston
= Calibration

= |ife insurance contract




ROUGH FRACTIONAL STOCHASTIC VOLATILITY MODEL (RFSV)

= The RFSV model is based on a fractional mean-reverting process for the log-volatility with H < 1/2 :

dSt =T St dt + Oy St th*

where X, = log o, and dB}! a fractional Gaussian noise with short memory.

= The volatility o, = exp(X;) is the unique stationary solution with short memory given by :

t
oy = exp(X¢) = exp {?7 + / o~ Alt—u) dBf}
— 0



RFSV - HISTORICAL VOLATILITY (CAC40)

= Gatheral et al. (2014) show with A = 0 :

JE[ sup yXf—ng—ny\] 0
te[0,7

and :
E[| X/ A — X1 — v K, A

= When A4 = 0, the log-volatility process of the RFSV
behaves as a fBm and approximately reproduces

their scaling property.

—> Confirmed empirically with the CAC40
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RFSV - HISTORICAL VOLATILITY (CAC40)

= The autocovariance of g, when A — 0 is given by :

H, vH H H oA2H

> log (Eloiaoy])is linear in A22 which is confirmed

empirically.

> Elot.a04 does not behave as a power-law function.

Nor the empirical data nor the RFSV exhibit long-term

memory.
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RFSV - HISTORICAL VOLATILITY

The RFSV model is extremely consistent with the
observed historical volatility due to its short

memory and rough sample paths (H < 1/2).




RFSV - IMPLIED VOLATILITY

- Extremely consistent with implied volatility and especially with the term structure of ATM

volatility skews :
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RFSV - DRAWBACK

= BUT, the RFSV model is too slow for pricing and calibration since it requires a lot

of slow and unstable Monte-Carlo simulations.

= Two more efficient models derived from the RFSV :

-> rBergomi model

-> Rough Heston model



rBERGOMI MODEL

=  Model obtained from the RFSV by setting A = 0 :

1 [T T
ST—Stexp(r(T—t)—§/ ’Uudu—i—[ \/EdW;’S)
t

2

v, = EX [v,|F] eXp 77\/_/ 1/2 HdW*_?(u t)? } = EY [v,|F) € (77 Wt*(u))

= A bit more efficient and stable than the RFSV model but still not optimal for calibration.

= The volatility generated by the rBergomi is not stationary since 4 = 0.

—> Inappropriate for long-term life insurance pricing




ROUGH HESTON MODEL

Extension of the classical Heston model with a rough fractional Gaussian noise (H < 12) :

dSt = St’f’ dt + St \/’thth*

1 t v .
vt _60(t)+F(H—|—1/2)/[; (t—S)I/Q_H \/U_SdWS

(= Stationary volatility generated by the rough Heston model.

The rough Heston is
excellent for pricing = Only 3 parameters and a characteristic function in closed-form

long-term life
insurance contracts

-> Pricing and calibration far more efficient and stable.

. = Highly consistent with historical and implied volatility.
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COMPARISON OF MODEL CALIBRATIONS (CAC 40, RMSE)
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COMPARISON OF VOLATILITY SAMPLE PATHS

Heston : Milstein Scheme, H=1/2
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Rough Heston : Euler Scheme, H=0.123
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OBSERVED HISTORICAL VOLATILITY CAC40

Daily historical volatility CAC40
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- Visually, same volatility sample paths as rough models.



COMPARISON OF ATM VOLATILITY SKEWS
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EQUITY-LINKED LIFE INSURANCE CONTRACT

=  Endowment insurance with maturity T where the benefits depend on the value of the fund F(t).

= Minimal annual return kg, and maximal annual return K, on F(t) with participation rate 7.

= The survival benefit is given by Fy x I{t > T} and the death benefit by F¢ x I{t < T} where:

[t
S
Fe — F : Km . 1 u —1 - plta
; OEmm{e ,ma;x{ +77(Su_1 ),e }}

= The faire value is given by discounting the expected benefits under a risk-neutral measure P* with mortality

modeled by a Poisson process (Makeham force of mortality p,).



FAIR VALUES OF LIFE INSURANCE CONTRACTS

= 50-year-old female policyholder, F(0) = 10 000 €, k,,,= 20% et n = 80%.

= Fair value FV, for different maturities T with k; = 1% :

kg = 1% Heston Bates rBergomi ough Heston
T =5 |[14036.57 1345749 €]]|12291.17 € [ 13529.65 €
1T'=10 [|19372.58 € | 17696.27 €](14909.54 € |\ [14063.09 €
T =20 [|35631.76 € | 29613.34 €]|20639.81 € ||\17823.38 €

a——

—> Lower fair values of rough-type models compared with the Heston and Bates models.

Most market-consistent
and accurate fair values !

—> Higher fair values of the rBergomi model compared with the rough Heston model for large maturities T

(non-stationarity).



WHY USING THE ROUGH HESTON MODEL ?

* The rough Heston model allows :

- To better reproduce the observed historical volatility.

- A better modeling of the implied volatility surface (ATM volatility skews).

- An easy, efficient and stable calibration method with only 3 parameters.

- Reasonable long-term properties due to its stationary volatility process.

—> The rough Heston tends to outperform existing models in terms of long-term pricing of insurance contrats




TO SUMMARIZE ...

Black and
Scholes

Classical

Stochastic volatility | Stochastic |Short memoryin o,

volatility
models

/

N\

Heston

Bates Other ...

RFSV

Rough
Heston

rBergomi

N2 20 20 Z

v

Tractable

Efficient calibration
Reasonable LT behavior
Consistent with implied
and historical volatility

Quite difficult calibration
Unreasonable LT
behaviour

- Consistent with implied

and historical volatility



Thank you for your attention !



