ROUGH STOCHASTIC VOLATILITY MODELING AND ITS IMPACT ON LONG-TERM LIFE INSURANCE PRICING

IA|BE PRIZE 2021 - DUPRET JEAN-LOUP

ROUGH STOCHASTIC VOLATILITY MODELING

- Classical stochastic volatility models
- Fractional Brownian motion
- RFSV model
 - rBergomi
 - Rough Heston
- Calibration
- Life insurance contract

VOLATILITY IS NOT CONSTANT

Observed volatility of stock returns is not constant but varies randomly with time:

→ Black & Scholes model inaccurate!

- Historical volatility S&P500:

- Implied volatility S&P500:

ATM VOLATILITY SKEWS: POWER-LAW

- \rightarrow In red, power-law function: $\psi(\tau) = A \tau^{-0.4}$.
- → In **black**, ATM volatility skew estimated for the S&P500, 6th July

HESTON AND BATES MODELS

• Under a risk-neutral measure \mathbb{P}^* , the **Heston model** is given by:

$$dS_t = S_t r dt + S_t \sqrt{v_t} dW_t^*$$

$$dv_t = \kappa(\eta - v_t) dt + \theta \sqrt{v_t} d\hat{W}_t^*$$

with v_t the variance process and W^* , \widehat{W}^* two correlated Brownian motions under \mathbb{P}^* .

• Under \mathbb{P}^* , the **Bates model** is given by:

$$\frac{dS_t}{S_t} = (r - \lambda \xi) dt + \sqrt{v_t} dW_t^* + (Y_t - 1) dN_t$$
$$dv_t = \kappa (\eta - v_t) dt + \theta \sqrt{v_t} d\hat{W}_t^*$$

with $N_t \sim Poi(\lambda t)$ and $\log(Y_t) \sim N(\mu_j, \sigma_j^2)$

HESTON AND BATES MODELS

ADVANTAGES:

- Incorporate mean-reverting stochastic volatility.
- Characteristic function in closed-form -> fast and efficient calibration.

DRAWBACKS:

- Implied volatility not realistic under these two models.
- Cannot reproduce the memory properties of the observed historical volatility.

ROUGH STOCHASTIC VOLATILITY MODELING

- Classical stochastic volatility models
- Fractional Brownian motion
- RFSV model
 - rBergomi
 - Rough Heston
- Calibration
- Life insurance contract

FRACTIONAL BROWNIAN MOTION (fBm)

A fractional Brownian motion $(B_t^H)_{t\geq 0}$ is a Gaussian process iif :

$$Cov(B_t^H, B_s^H) = \mathbb{E}(B_t^H B_s^H) = \frac{1}{2} \{ t^{2H} + s^{2H} - |t - s|^{2H} \} \mathbb{E} ((B_1^H)^2)$$

- Depends on the parameter $H \in (0,1)$, called the **Hurst index**.
- Stationarity of increments.
- Increments are **positively** correlated if H > 1/2, **negatively** correlated if H < 1/2 and **independent** if H = 1/2:

Fractional Bm : H < 1/2

Classical Bm : H = 1/2

Fractional Bm : H>1/2

FRACTIONAL BROWNIAN MOTION - INCREMENTS

- The process of increments of the fBm $\Delta B_t^H = B_t^H B_{t-1}^H$ is said to have :
 - Long memory for H > 1/2
 - Short memory for H < 1/2
 - → One-to-one correspondance with the regularity of fBm trajectories.

- ΔB_t^H is called a **fractional Gaussian noise**
 - → Basis of fractional mean-reverting process (RFSV model).

ROUGH STOCHASTIC VOLATILITY MODELING

- Classical stochastic volatility models
- Fractional Brownian motion
- RFSV model
 - rBergomi
 - Rough Heston
- Calibration
- Life insurance contract

ROUGH FRACTIONAL STOCHASTIC VOLATILITY MODEL (RFSV)

• The RFSV model is based on a fractional mean-reverting process for the log-volatility with H < 1/2:

$$dS_t = r S_t dt + \sigma_t S_t dW_t^*$$

$$dX_t = \lambda(\eta - X_t) dt + \nu dB_t^H$$

where $X_t = \log \sigma_t$ and dB_t^H a fractional Gaussian noise with short memory.

• The volatility $\sigma_t = \exp(X_t)$ is the **unique stationary solution with short memory** given by :

$$\sigma_t = \exp(X_t) = \exp\left\{\eta + \int_{-\infty}^t e^{-\lambda(t-u)} dB_u^H\right\}$$

RFSV - HISTORICAL VOLATILITY (CAC40)

• Gatheral et al. (2014) show with $\lambda \to 0$:

$$\mathbb{E}\Big[\sup_{t\in[0,T]}|X_t^H - X_0^H - \nu B_t^H|\Big] \to 0$$

and:

$$\mathbb{E}[|X_{t+\Delta}^H - X_t^H|^q] \to \nu^q K_q \Delta^{qH}$$

- When $\lambda \to 0$, the log-volatility process of the RFSV behaves as a fBm and approximately reproduces their scaling property.
- → Confirmed **empirically** with the CAC40

RFSV - HISTORICAL VOLATILITY (CAC40)

The autocovariance of σ_t when $\lambda o 0$ is given by :

$$\mathbb{E}[\sigma_{t+\Delta}\sigma_t] = \mathbb{E}[e^{X_t^H + X_{t+\Delta}^H}] \approx e^{2\mathbb{E}[X_t^H] + 2\operatorname{Var}[X_t^H]}e^{-\nu^2\frac{\Delta^{2H}}{2}}$$

- $\rightarrow \log (\mathbb{E}[\sigma_{t+\Delta}\sigma_t])$ is linear in Δ^{2H} , which is confirmed empirically.
- $\rightarrow \mathbb{E}[\sigma_{t+\Delta}\sigma_t]$ does not behave as a **power-law function**. Nor the empirical data nor the RFSV exhibit long-term memory.

RFSV - HISTORICAL VOLATILITY

The RFSV model is extremely consistent with the **observed historical volatility** due to its <u>short memory</u> and <u>rough sample paths</u> (H < 1/2).

RFSV - IMPLIED VOLATILITY

→ Extremely consistent with **implied volatility** and especially with the term structure of **ATM** volatility skews :

RFSV - DRAWBACK

 <u>BUT</u>, the RFSV model is too slow for pricing and calibration since it requires a lot of slow and unstable <u>Monte-Carlo</u> simulations.

- Two more efficient models derived from the RFSV :
 - → rBergomi model
 - → Rough Heston model

rBERGOMI MODEL

• Model obtained from the RFSV by setting $\lambda = 0$:

$$S_T = S_t \exp\left(r(T-t) - \frac{1}{2} \int_t^T v_u \, du + \int_t^T \sqrt{v_u} \, dW_u^{*,S}\right)$$

$$v_u = \mathbb{E}^{\mathbb{P}^*}[v_u | \mathcal{F}_t] \exp\left\{\eta \sqrt{2H} \int_t^u \frac{1}{(u-s)^{1/2-H}} dW_s^* - \frac{\eta^2}{2} (u-t)^{2H}\right\} = \mathbb{E}^{\mathbb{P}^*}[v_u | \mathcal{F}_t] \mathcal{E}\left(\eta \, \tilde{W}_t^*(u)\right)$$

- A bit more efficient and stable than the RFSV model but still **not optimal** for calibration.
- The volatility generated by the rBergomi is **not stationary** since $\lambda = 0$.

→ Inappropriate for long-term life insurance pricing

ROUGH HESTON MODEL

Extension of the classical Heston model with a rough fractional Gaussian noise (H < $\frac{1}{2}$):

$$dS_t = S_t r dt + S_t \sqrt{v_t} dW_t^*$$

$$v_t = \xi_0(t) + \frac{1}{\Gamma(H+1/2)} \int_0^t \frac{\nu}{(t-s)^{1/2-H}} \sqrt{v_s} d\hat{W}_s^*$$

The rough Heston is excellent for pricing long-term life insurance contracts

- Stationary volatility generated by the rough Heston model.
- Only 3 parameters and a characteristic function in closed-form
 - → Pricing and calibration far more efficient and stable.
- Highly consistent with historical and implied volatility.

ROUGH STOCHASTIC VOLATILITY MODELING

- Classical stochastic volatility models
- Fractional Brownian motion
- RFSV model
 - rBergomi
 - Rough Heston
- Calibration
- Life insurance contract

COMPARISON OF MODEL CALIBRATIONS (CAC 40, RMSE)

Rough Heston: RMSE = 0.0929

Bates: RMSE = 0.0863

rBergomi: RMSE = 0.11315

Strike K

COMPARISON OF VOLATILITY SAMPLE PATHS

Rough Heston: Euler Scheme, H=0.123

Bates: Milstein Scheme, H = 1/2

rBergomi: Hybrid Scheme, *H*=0.150

OBSERVED HISTORICAL VOLATILITY CAC40

→ Visually, same volatility sample paths as rough models.

COMPARISON OF ATM VOLATILITY SKEWS

Heston: ATM volatility skews

Rough Heston: ATM volatility skews

Bates: ATM volatility skews

rBergomi: ATM volatility skews

ROUGH STOCHASTIC VOLATILITY MODELING

- Classical stochastic volatility models
- Fractional Brownian motion
- RFSV model
 - rBergomi
 - Rough Heston
- Calibration
- Life insurance contract

EQUITY-LINKED LIFE INSURANCE CONTRACT

- **Endowment insurance** with maturity T where the benefits depend on the value of the fund F(t).
- Minimal annual return κ_g and maximal annual return κ_m on F(t) with participation rate η .
- The survival benefit is given by $F_T^e \times \mathbb{I}\{t \geq T\}$ and the death benefit by $F_t^e \times \mathbb{I}\{t < T\}$ where :

$$F_t^e = F_0 \prod_{u=1}^{\lfloor t \rfloor} \min \left\{ e^{\kappa_m} \; ; \; \max \left\{ 1 + \eta \left(\frac{S_u}{S_{u-1}} - 1 \right) \; ; \; e^{\kappa_g} \right\} \right\}$$

The faire value is given by discounting the expected benefits under a risk-neutral measure \mathbb{P}^* with mortality modeled by a Poisson process (Makeham force of mortality μ_x).

FAIR VALUES OF LIFE INSURANCE CONTRACTS

- 50-year-old female policyholder, $F(0) = 10\,000 \in$, $\kappa_m = 20\%$ et $\eta = 80\%$.
- Fair value FV_0 for different maturities T with $\kappa_g=1\%$:

						_
$k_g = 1\%$	Heston	Bates	rBergomi	ſ	ough Heston	
T=5	14 036.57 €	13 457.49 €	12 291.17 €		13 529.65 €	Most market-consistent
T = 10	19 372.58 €	17696.27 €	14 909.54 €		14 063.09 €	and accurate fair values!
T = 20	35 631.76 €	29 613.34 €	20 639.81 €		17823.38 €	
						_

- → Lower fair values of rough-type models compared with the Heston and Bates models.
- → Higher fair values of the **rBergomi** model compared with the **rough Heston** model for **large maturities** *T* (non-stationarity).

WHY USING THE ROUGH HESTON MODEL?

- The <u>rough Heston</u> model allows :
- To better reproduce the observed historical volatility.
- A better modeling of the **implied volatility surface** (ATM volatility skews).
- An easy, efficient and stable calibration method with only 3 parameters.
- Reasonable long-term properties due to its **stationary volatility** process.
 - → The <u>rough Heston</u> tends to outperform existing models in terms of long-term pricing of insurance contrats

TO SUMMARIZE ...

Thank you for your attention!