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Motivation

In the commodity markets, several findings emerge:

1 There are storage costs

2 There is no dividend

3 The market is no longer complete and then the risk-neutral probability measure
is no longer unique → New probability measure.

4 Some markets are associated with mean-reversion features.

5 Some markets are driven by long-range dependency structures.

⇓

Benth (2020) proposes to study a commodity price model to combine these different
observations.
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Lévy Process

Let introduce (Lt)0≤t≤T be a Lévy process with the characteristic triplet (µ, σ2, ν)
such that

Lt = µt + σWt +
∫ t

0

∫
R

zN(ds × dz), 0 ≤ t ≤ T,

with an asymmetric double exponential law concerning the distribution of the
size of the jumps

fY (y) = pη1e−η1y
1{y≥0} + (1 − p)η2eη2y

1{y<0}.

Advantages :
1 Fat tails of the distribution
2 Asymmetric distribution
3 Implied volatility skew
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Generalized Langevin Equation

Let introduce (St)0≤t≤T the price in commodity market and Xt := log(St) the
log-price, such as (Xt)0≤t≤T is a generalized Langevin equation of the form

dXt = β(θ − Xt)dt +
( ∫ t

0
M(t − u)Xudu

)
dt + χ(t−)dLt,

Takahashi (1996) gave the following solution for the Laplace-Fourier transform
of Xt :

L[Xt] =

[
X0 + θ × β

s
+ χ(t−)L

[dLt

dt

]]
H(s),

where
H(s) = 1

s − L[M(s)] + β

which allows to get an expression for Xt :

Xt = X0L−1[H(s)] + βθ

∫ t

0
L−1[H(s)]t−udu +

∫ t

0
χ(u−)L−1[H(s)]t−u

dLu

du
du,
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Delta Kernel

First Kernel : Delta Function

The first option is a function that introduces an instantaneous influence of the
past evolution, i.e. the Dirac Delta function at zero of the form M(t) = aδ0(t) such
as

dXt = β(θ − Xt)dt +
( ∫ t

0
aδ0(t − u)Xudu

)
dt + χ(t−)dLt.

Using the Laplace-Fourier table, the process Xt becomes :

Xt = e−(β−a)tX0 + βθ
[1 − e−(β−a)t

β − a

]
+

∫ t

0
χ(u−)e−(β−a)(t−u)dLu

Similarities with the Ornstein-Ulhenbeck model.

Maxime Dom IA|BE October 20, 2022 6 / 29



Motivation Lévy Process G. Langevin Equation Change of Measure Practical Applications Conclusion Appendix

Exponential Kernel

Second Kernel : Negative Exponential

The second option is a function that introduces a persistent influence over a
relatively short period of time. If M(t) = ae−bt with b > 0 and b2 − 4a > 0, we
get :

dXt = β(θ − Xt)dt +
( ∫ t

0
ae−b(t−u)Xudu

)
dt + χ(t−)dLt.

Using the Laplace-Fourier table, the expression of the process Xt becomes :

Xt =
1

s1 − s2
×

(
X0

[
(s1 + b)es1t − (s2 + b)es2t

]
+ βθ

{
(s1 + b)(es1t − 1)

s1

−
(s2 + b)(es2t − 1)

s2

}
+

∫ t

0
χ(u−)

{
(s1 + b)es1(t−u) − (s2 + b)es2(t−u)

}
dLu

)
where s1, s2 are the two roots of the denominator in the inverse Laplace-Fourier
transform... not very tractable.
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Power Kernel

Third Kernel : Negative Power

A negative power function is used when the influence of the past persists over a
longer period of time. If M(t) = at−α with the condition 0 < α < 1 :

dXt = β(θ − Xt)dt +
( ∫ t

0
a(t − u)−αXudu

)
dt + χ(t−)dLt,

By using the same procedure as for the previous expression with L[M(s)] = aΓ(1−α)
s1−α

it follows :

L−1[H(s)] = L−1
[ 1

s − L[M(s)] + β

]
= L−1

[
s1−α

s2−α + βs1−α − aΓ(1 − α)

]
There is no closed formula for this inverse Laplace-Fourier transform. Different
alternatives have been suggested but... not tractable.
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Power Kernel

Power Kernel (cont.)

=⇒ Loss of generality, not tractable form and difficult to interpret.
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Power Kernel

Pathwise Comparison

Figure: A simulation of the price of a commodity according to the three different kernels.
The starting level is set lower than the mean reversion level.
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Change of Measure

By defining the numeraire of this pricing measure such that

Bt := exp
{ ∫ t

0
rsds

}
and the convenience yield

ρt = β(θ − Xt) +
∫ t

0
M(t − u)Xudu.

The dynamics of the discounted commodity price under the pricing measure Q
becomes

dS̃t = S̃t

{
ρtdt + σdWQ

t +
∫
R

(ez − 1)ÑQ(dt, dz)
}

,

and the commodity price

dSt = St

{(
rt + β(θ − Xt) +

∫ t

0
M(t − u)Xudu

)
dt + σdWQ

t +
∫
R

(ez − 1)ÑQ(dt, dz)
}

,

which has a return equal to the sum of the interest rate and of the convenience
yield =⇒ which is assimilated to memory.
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Data

Figure: Prices of the different commodities markets studied between November
2015 and November 2020. They are all reported in USD except for Corn, which is
reported in US cents.
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Optimal Models Selected

Commodity Market Gold (Exponential) Oil (Delta) Corn (Kou) Copper (Delta)
a 0.3748 0.1467 / 1.1447
b 2.335 / / /
θ 0.2472 0.1644 / 0.0905
β 1.0507 2.3533 / 1.8553
λ 29.681 36.642 159.194 49.907
p 0.7331 0.227 0.489 0.473
η1 128.294 15.203 113.543 117.233
η2 148.617 51.687 118.509 130.356
σ 0.1212 0.224 0.106 0.149

Memory Persistent Instantaneous No memory Instantaneous

Table: Parameters obtained with respect to the optimal models for each market.

Maxime Dom IA|BE October 20, 2022 14 / 29



Motivation Lévy Process G. Langevin Equation Change of Measure Practical Applications Conclusion Appendix

Implied Volatility

Figure: Implied volatility surface of each commodity.

CORN (KOU):
No mean-reversion −→ Smile
for small maturities

COPPER / GOLD / OIL:
Skewed jump distributions −→
Skew

COPPER / GOLD / OIL:
Mean-reversion −→ Convex
volatilities over time

COPPER / GOLD / OIL:
Mean-reversion −→ Volatility
inversely proportional to
moneyness
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Vanilla Option Pricing

Model Gold Corn Oil Copper
Kou 10.945 9.185 12.223 10.284

Delta Kernel 11.178 8.983 12.077 10.483
Expo Kernel 11.461 9.918 11.310 9.401

Table: Call option prices computed with the optimal parameters derived earlier for each
of the markets and each of the models for a maturity of one month.

Vanilla options only focused on marginal distributions at maturity

⇓
Forget the « path-dependent » effects that characterise memory processes
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Exotic Pricing

Motivation to price a path-dependent derivative relevant for commodities markets

⇓
Barrier Reverse Convertible with the Fair Value at inception:

F Vt=0 = C

n∑
i=1

(
e

−r(ti) ti
)

︸ ︷︷ ︸
n coupons

+
N

S0
e

−r(T )T EQ

[
S0 − 1{L≤H} ×

(
S0 − ST

)
+

]
︸ ︷︷ ︸

Repayment of the principal (or a part)

Three different cases are possible for the repayment depending on the evolution
of (St)0≤t≤T :

PayoffBRC = N × 1{L>H}︸ ︷︷ ︸
Never crosses

+ N × 1{L≤H} × 1{ST >S0}︸ ︷︷ ︸
Crosses but ends up above

+
N × ST

S0
× 1{L≤H} × 1{S0≥ST }︸ ︷︷ ︸

Crosses and ends up below

with H is a lower barrier and L the minimum value of St ∀0 ≤ t ≤ T .
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Exotic Pricing (cont.)
Barrier Reverse Convertible (Down-and-In Barrier Put Option, i.e. DIBP):

F Vt=0 = C

n∑
i=1

(
e

−r(ti) ti
)

+
N

S0
e

−r(T )T EQ

[
S0 − 1{L≤H} ×

(
S0 − ST

)
+

]
The value of the fair coupons is therefore such as (for N = 1):

C =
(1 − x) − e−r(T )T + 1

S0
DIBPt=0∑n

i=1

(
e−r(ti) ti

) , with the banking fees x.

Figure: Comparison of coupon rates for the Gold market.

=⇒ More market-consistent and have more accurate fair values.
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Conclusion

Various points should be highlighted:

Non unique risk-neutral measure → Pricing probability measure.

Convenience Yield: no dividend and costs of storage etc.

Different kinds of time dependency: short (Oil) or long (Gold) term
structures → better reproduce the observed historical properties.

The interest of using non-Markovian models in the pricing of derivatives
(path-dependent) → market-consistency.

Future tracks:

Model implementation for the convenience yield and the interest rate.

Focus on the very important topic of hedging.
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Thank you for your attention !
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Delta Kernel (cont.)

The characteristic function of the process, considering that we are at inception :

ΦXt (u) = exp
(

iu

(
e−(β−a)tX0 +

[
βθ + µ

]1 − e−(β−a)t

β − a

)
−

σ2u2(1 − e−2(β−a)t)
4(β − a)

+ λ

{
p

β − a
log

(
η1 − iue−(β−a)t

η1 − iu

)
+

(1 − p)
β − a

log
(

η2 + iue−(β−a)t

η2 + iu

)})
.

For ease of calibration in the practical part, we assume here that the mean of the
diffusion term is zero, such as

C(XtXs) = E
[ ∫ t

0
e−(β−a)(t−u)dLu

∫ s

0
e−(β−a)(s−u)dLu

]
=

(
σ2 + λE[Y 2]

)
×

e−(β−a)(t−s) − e−(β−a)(t+s)

2(β − a)

and finally the autocorrelation

ρk = e−(β−a)k − e−(β−a)(2t−k)
√

1 − e−2(β−a)t − e−2(β−a)(t−k) + e−2(β−a)(2t−k)
.
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Exponential Kernel (cont.)

The characteristic function of the process, considering that we are at inception :

ΦXt
(u) = exp

(
iu

s1 − s2
×

[
X0[(s1 + b)e

s1t − (s2 + b)e
s2t] + (βθ + µ) ×

{ (s1 + b)(es1t − 1)

s1
−

(s2 + b)(es2t − 1)

s2

}]
−

u2σ2

4(s1 − s2)2

( (s1 + b)2(e2s1t − 1)

s1
−

(s2 + b)2(e2s2t − 1)

s2

)
+ λ

{
p

s1
× log

( η1(s1 − s2) − iu(s1 + b)

η1(s1 − s2) − iu(s1 + b)es1t

)
+

(1 − p)

s1
× log

( η2(s1 − s2) + iu(s1 + b)

η2(s1 − s2) + iu(s1 + b)es1t

)
−

p

s2
× log

( η1(s1 − s2) − iu(s2 + b)

η1(s1 − s2) − iu(s2 + b)es2t

)
−

(1 − p)

s2
× log

( η2(s1 − s2) + iu(s2 + b)

η2(s1 − s2) + iu(s2 + b)es2t

)})
Assuming that the mean of the diffusion term is zero, such as

C(XtXs) =

(
σ2 + λE[Y 2]

)
(s1 − s2)2

×
[ (s1 + b)2

2s1
(e

s1(t+s) − e
s1(t−s)) −

(s1 + b)(s2 + b)

(s1 + s2)
(e

s1t+s2s − e
s1(t−s))

−
(s1 + b)(s2 + b)

(s1 + s2)
(e

s2t+s1s − e
s2(t−s)) +

(s2 + b)2

2s2
(e

s2(t+s) − e
s2(t−s))

]
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Exponential Kernel (cont.)

And finally the autocorrelation

ρk =

(s1+b)2
2s1

(es1(2t−k) − es1k) − (s1+b)(s2+b)
(s1+s2)

(
(es1t+s2(t−k) − es1k) + (es2t+s1(t−k) − es2k)

)
+ (s2+b)2

2s2
(es2(2t−k) − es2k)√

φ(t) ×
√

φ(t − k)
,

with

φ(t) =
(

(s1 + b)2
[

e2s1t − 1
2s1

]
− 2(s1 + b)(s2 + b)

[
e(s1+s2)t − 1

s1 + s2

]
+ (s2 + b)2

[
e2s2t − 1

2s2

])
.
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Calibration

1 Define the log-price:
Xj = log(Pj/P0)

where Pj is the j-th price.
2 Obtain the parameters of the autocorrelation by RMSE:

RMSE =

√√√√ N∑
j=1

1
N

(ρmarket
j − ρ̂model

j )2.

Then we obtain the parameters such as : Θ∗
1 = arg minΘ1 L(ρmarket

j , ρ̂model
j (Θ1)).

3 De-mean the processes : for the Delta kernel as

Yj = Xj −
(

β∗θ

β∗ − a∗

)(
1 − e−(β∗−a∗)tj

)
,

and for the Exponential kernel as,

Yj = Xj −
β∗θ

s∗
1 − s∗

2

{ (s∗
1 + b∗)(es∗

1 tj − 1)
s∗

1
−

(s∗
2 + b∗)(es∗

2 tj − 1)
s∗

2

}
.

Then we get Θ∗
2 = (θ∗).
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Calibration (cont.)

4 Approximate the process Zj for the Delta kernel as

Zj = Yj − Yj−1e−(β∗−a∗)∆t

=
∫ t+∆t

0
e−(β∗−a∗)(t+∆t−u)dLu −

∫ t

0
e−(β∗−a∗)(t−u)dLu

≈
∫ ∆t

0
e−(β∗−a∗)(∆t−u)dLu

and for the Exponential kernel as,

Zj = Yj − Yj−1

(
1

s∗
1 − s∗

2
×

[
(s∗

1 + b∗)es∗
1 ∆t − (s∗

2 + b∗)es∗
2 ∆t

])
=

1
s∗

1 − s∗
2

×
{ ∫ t+∆t

0

(
(s∗

1 + b∗)es∗
1 (t+∆t−u) − (s∗

2 + b∗)es∗
2 (t+∆t−u)

)
dLu

−
∫ t

0

(
(s∗

1 + b∗)es∗
1 (t−u) − (s∗

2 + b∗)es∗
2 (t−u)

)
dLu

}
≈

1
s∗

1 − s∗
2

×
∫ ∆t

0

(
(s∗

1 + b∗)es∗
1 (∆t−u) − (s∗

2 + b∗)es∗
2 (∆t−u)

)
dLu.
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Calibration(cont.)

5 Maximise the log-likelihood:

Θ∗
3 = arg max

Θ3
log f̂(Θ3; Z), (7.1)

by numerically inverting the characteristic function.
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Optimal Fitted Densities (Noise : Lévy process)

Figure: Empirical densities and those approximated by the optimal model for each market.
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Moments of the different market

Commodity Market E[∆Xt]
√

V[∆Xt] S[∆Xt] K[∆Xt]

Empirical

Gold (EXPO) 0.0003 0.0075 0.1809 7.778
Copper (DELTA) 0.0001 0.0107 -0.0017 4.911

Corn (KOU) 0 0.0112 -0.0476 5.363
Oil (DELTA) 0.0002 0.0052 -0.0838 3.964

Model

Gold (EXPO) 0.0003 0.0075 0.2571 6.973
Copper (DELTA) 0 0.0105 0 4.707

Corn (KOU) 0 0.0110 -0.0537 5.215
Oil (DELTA) 0 0.0048 0 3.871

Table: Moments of the daily log-returns of the markets and the fitted optimal models.
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Simulations

Figure: Simulation of 100 paths sample of the price of each commodity over the 5 years of
observation and comparison with the price actually observed on the market.
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