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Introduction

2Lotto

Correct Numbers Average Prize (€) Odds

Rank 1 6 1 806 159.45 1 in 8 145 060

Rank 2 5 + bonus 59 878.78 1 in 1 357 510

Rank 3 5 1 423.85 1 in 35 724

Rank 4 4 + bonus 277.11 1 in 14 290

Rank 5 4 25.94 1 in 772

Rank 6 3 + bonus 10.48 1 in 579

Rank 7 3 6.25 1 in 48

Rank 8 2 + bonus 3.75 1 in 64

Rank 9 1 + bonus 1.25 1 in 18

Data retrieved from https://www.nationale-loterij.be/onze-spelen/lotto/statistieken
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4Lotto

Bet 

€ 1.25 

Average

Revenue

€ 0.63 

Financial 
Instrument

Price 

€ X 

Average

Payout

€ Y 

X > Y

Why are people 

willing to pay 

more? 

For which 

instruments? 

How to 

determine the 

average 

payout? 

> >
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𝑃-world

›     Physical world in which payoffs are realized

›     Physical density 𝑝 used to calculate expected payoffs = ∫ payoff ⋅ 𝑝

Expected payoff = € 0.63 = 𝐸𝑃(payoff Lotto)

›     Artificial setting under which one determines prices

›     Pricing density 𝑞 used to estimate prices ≈ ∫ payoff ⋅ 𝑞

Price ticket = € 1.25 ≈ 𝐸𝑄(payoff Lotto) 𝑄-world
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This master’s thesis focusses on the interplay between 𝑃 and 𝑄. 
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…you need bricks.

This master’s thesis focusses on the interplay between 𝑃 and 𝑄. 

› Physical density 𝒑 in order to calculate 𝐸𝑃(payoff) = ∫ payoff ⋅ 𝑝

› Pricing density 𝒒 in order to calculate 𝐸𝑄(payoff) = ∫ payoff ⋅ 𝑞
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Physical density 𝑝

› Backward looking

› One new observation each day

Pricing density 𝑞

› Forward looking

› Multiple new observations each day

Some 

theory

9Estimation methods

Historical data on the return of the asset Option data and pricing model
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› Forward looking
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Historical data on the return of the asset Option data and pricing model

Is there a way to also estimate physical densities from option data?
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“All models are wrong, 

but some are useful.”

- George E.P. Box 
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Some 

theory

12Tilted Bilateral Gamma model

› Extension of the Bilateral Gamma model

› Allows for the joint estimation of the physical and pricing density
from option prices

ASSUMPTIONS

› Investors are risk-averse

› Investors have heterogeneous beliefs
• Long positions are allowed

• Short positions are allowed 

(Madan, Schoutens & Wang, 2020)
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Empirical evidence in e.g. (Bakshi et al., 2010)
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Data study
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Tilted Bilateral Gamma 
as option pricing model

FIGURE Evolution of the RMSE over time between optimal Black-Scholes, Variance Gamma, Bilateral

Gamma and Tilted Bilateral Gamma model prices and market prices of plain-vanilla options on the S&P500

index. A calibration is conducted on each business day between January 2, 2018 and August 29, 2018.
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18Option positioning

Price ≈ 𝐸𝑄
𝑝−𝑞

𝑞
= ∫

𝑝−𝑞

𝑞
⋅ 𝑞 = 0

Consider the 

curve 
𝑝−𝑞

𝑞

Calibrate Tilted 

Bilateral Gamma 

model on option 

data S&P500
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Call option Put option
Risk-free 
account

Stock

Buy

Sell
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19Option positioning strategy

p
/q

 -
1

FIGURE Calculations are based on option data of the

S&P500 index on January 2, 2018. The maturity is equal to 1

month.
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The risk premium 
of a financial instrument

Calibrate Tilted 

Bilateral Gamma

Physical density 𝑝

Pricing density 𝑞

𝐸𝑃(payout)

𝐸𝑄(payout)

𝐸𝑃(payout)
Risk Premium of a financial instrument

=
𝐸𝑃 payout −𝐸𝑄(payout)

𝐸𝑄(payout)

Expensive 

instrument

Cheap instrument
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Zero-risk premium strike 
of a call option

› European Call option on asset 𝑆 with strike 𝐾 and maturity 𝑇

𝐸𝑃(payout)
Payoff

= ቊ
𝑆𝑇 − 𝐾 𝐾 < 𝑆𝑇
0 𝐾 ≥ 𝑆𝑇
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Zero-risk premium strike 
of a call option

FIGURE Risk premium of the European call option with maturity T = 1 month and varying strikes with

underlying the S&P500 index on March 15, 2018. The zero-risk premium moneyness level amounts around

95.45% of the spot price.
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Zero-risk premium strike 
of a call option

FIGURE Evolution over time of the zero-risk premium strike of a European call option on the S&P500

index, with a fixed maturity of 1 month. The average moneyness level amounts around 93.15%.
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Conclusion

24Conclusion

› Allows for the simultaneous estimation of the physical and 

pricing density from option prices

› Outperforms classic option pricing models 

Tilted 

Bilateral 

Gamma

› Set up an option positioning strategy with theoretical cost 

equal to 0

› Look at evolution of profit over time

Option 

positioning

› Risk premium of a call option decreases with moneyness

› Zero-risk premium strike call option on S&P 500 index 

situated in-the-money and rather stable over time

Risk 

premium 



THANK YOU!
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