

KU LEUVEN

FACULTY OF SCIENCE

Prize 2020

Joint modeling of the physical and pricing density

with applications

Master's thesis in Mathematics

Eva Verschueren

Supervisor: Prof. Wim Schoutens

September 24, 2020

Lotto

	Correct Numbers	Average Prize (€)	Odds
Rank 1	6	1 806 159.45	1 in 8 145 060
Rank 2	5 + bonus	59 878.78	1 in 1 357 510
Rank 3	5	1 423.85	1 in 35 724
Rank 4	4 + bonus	277.11	1 in 14 290
Rank 5	4	25.94	1 in 772
Rank 6	3 + bonus	10.48	1 in 579
Rank 7	3	6.25	1 in 48
Rank 8	2 + bonus	3.75	1 in 64
Rank 9	1 + bonus	1.25	1 in 18

Data retrieved from https://www.nationale-loterij.be/onze-spelen/lotto/statistieken

Lotto

Average number of players / draw

> Physical world in which payoffs are realized

> Physical density *p* used to calculate expected payoffs = ∫ payoff · *p* Second Expected payoff = € 0.63 = *E_p*(payoff Lotto)

- > Artificial setting under which one determines prices
- > Pricing density q used to estimate prices $\approx \int payoff \cdot q$

Setting the scene

7

This master's thesis focusses on the interplay between P and Q.

To build a bridge...

Setting the scene

7

This master's thesis focusses on the interplay between P and Q.

To build a bridge...

...you need bricks.

Pricing density q in order to calculate

 $E_P(payoff) = \int payoff \cdot p$ $E_Q(payoff) = \int payoff \cdot q$

Estimation methods

Physical density *p*

Historical data on the return of the asset

Pricing density q

Option data and pricing model

> Backward looking

> One new observation each day

> Forward looking

> Multiple new observations each day

Estimation methods

Physical density *p*

Pricing density q

Historical data on the return of the asset

Option data and pricing model

> Backward looking

> One new observation each day

> Forward looking

> Multiple new observations each day

Is there a way to also estimate physical densities from option data?

INCREASED ACCURACY

"All models are wrong, but some are useful."

- George E.P. Box

INCREASED ACCURACY

- > Extension of the Bilateral Gamma model
- Allows for the joint estimation of the physical and pricing density from option prices

- > Extension of the Bilateral Gamma model
- Allows for the joint estimation of the physical and pricing density from option prices

- > Investors are risk-averse
- > Investors have heterogeneous beliefs
 - Long positions are allowed
 - Short positions are allowed

Recall

> Physical density:

what you expect to get back from the instrument

> Pricing density:

what you are *willing to pay* for the instrument

Recall

> Physical density:

what you expect to get back from the instrument

Pricing density:
what you are *willing to pay* for the instrument

Risk-aversion and heterogeneous beliefs lead to

> Long investor:

wealth loss in negative return state

 \rightarrow loss protection leads to heavier left tail

Recall

> Physical density:

what you expect to get back from the instrument

Pricing density:
what you are *willing to pay* for the instrument

Risk-aversion and heterogeneous beliefs lead to

> Long investor:

wealth loss in negative return state

- \rightarrow loss protection leads to heavier left tail
- > Short investor:

wealth loss in positive return state \rightarrow loss protection leads to heavier right tail

Recall

> Physical density:

what you expect to get back from the instrument

Pricing density:
what you are *willing to pay* for the instrument

Risk-aversion and heterogeneous beliefs lead to

> Long investor:

wealth loss in negative return state

- \rightarrow loss protection leads to heavier left tail
- > Short investor:

wealth loss in positive return state \rightarrow loss protection leads to heavier right tail

Pricing density q = U-shape \cdot physical density p

Pricing density q = U-shape \cdot physical density p

Pricing density q = U-shape \cdot physical density p

Pricing density follows a Tilted Bilateral Gamma model

Physical density from Bilateral Gamma family

Pricing density q = U-shape \cdot physical density p

Pricing density follows a Tilted Bilateral Gamma model

Physical density from Bilateral Gamma family

3

Pricing density can be estimated from option data

Pricing density q = U-shape \cdot physical density p

Pricing density follows a Tilted Bilateral Gamma model

Physical density from Bilateral Gamma family

Pricing density can be estimated from option data

Physical density can be jointly estimated from option data

Pricing density q = U-shape \cdot physical density p

Pricing density follows a Tilted Bilateral Gamma model

3

Pricing density can be estimated from option data

Physical density can be jointly estimated from option data

Data study 16

Tilted Bilateral Gamma as option pricing model

FIGURE Evolution of the RMSE over time between optimal Black-Scholes, Variance Gamma, Bilateral Gamma and Tilted Bilateral Gamma model prices and market prices of plain-vanilla options on the S&P500 index. A calibration is conducted on each business day between January 2, 2018 and August 29, 2018.

Master's thesis original application

Option positioning

Calibrate Tilted Bilateral Gamma model on option data S&P500

Physical density p

 $\sim \mathsf{payout}$

Pricing density q

 \sim price

Applications

Option positioning

Option positioning: the curve $\frac{p-q}{q}$

Applications

Option positioning

Option positioning: the curve $\frac{p-q}{q}$

Applications $18 \in B$

Option positioning: the curve $\frac{p-q}{q}$

Applications $18 \in B$ $\$ \in B$ $\$ \in B$

Option positioning: estimation of the curve

Option positioning strategy

Curve Zero Approximation 0.5 - Cost **Real Return** p/q -1 0 -0.5 -1 -0.1 -0.05 0.05 0.1 0 return

FIGURE Calculations are based on option data of the S&P500 index on January 2, 2018. The maturity is equal to 1 month.

Applications

Option positioning strategy

Applications

Additional application

The risk premium of a financial instrument

The risk premium of a financial instrument

The risk premium of a financial instrument

Zero-risk premium strike of a call option

> European Call option on asset S with strike K and maturity T

$$Payoff = \begin{cases} S_T - K & K < S_T \\ 0 & K \ge S_T \end{cases}$$

Applications

Zero-risk premium strike of a call option

0.05 0 -0.05 L:0-Risk Premium 0.12 -0.2 -0.25 -0.3 -0.35 0.85 0.9545 1.05 1 Moneyness

FIGURE Risk premium of the European call option with maturity T = 1 month and varying strikes with underlying the S&P500 index on March 15, 2018. The zero-risk premium moneyness level amounts around 95.45% of the spot price.

Applications

Zero-risk premium strike of a call option

Average level Smoothed levels 0.98 Zero-risk premium moneyness level 66 76 76 76 76 76 76 76 76 76 76 76 76 0.9 0.88 2018-01-02 2018-08-29 Date

FIGURE Evolution over time of the zero-risk premium strike of a European call option on the S&P500 index, with a fixed maturity of 1 month. The average moneyness level amounts around 93.15%.

Applications

Conclusion

- Allows for the simultaneous estimation of the physical and pricing density from option prices
- > Outperforms classic option pricing models

Tilted Bilateral Gamma

Option

positioning

- Set up an option positioning strategy with theoretical cost equal to 0
- > Look at evolution of profit over time

Risk premium of a call option decreases with moneyness
Zero-risk premium strike call option on S&P 500 index
premium situated in-the-money and rather stable over time

THANK YOU!

- Bakshi, G., Madan, D. B. and Panayotov, G. (2010)..*Returns of claims on the upside* and the viability of U-shaped pricing kernels. Journal of Financial Economics 97(1), 130-154.
- Madan, D. B., Schoutens, W. and Wang, K. (2020), *Bilateral multiple Gamma returns: their risks and rewards.* International Journal of Financial Engineering 7(1).
- Verschueren, E., Höcht, S., Madan, D. B., Schoutens, W. (2020). It takes two to tango: estimation of the zero-risk premium strike of a call option via joint physical and pricing density modeling. Manuscript submitted for publication.