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Introduction

Lotto

Correct Numbers Average Prize (€) Odds
Rank 1 6 1 806 159.45 1in 8 145 060
Rank 2 5 + bonus 59 878.78 1in1 357510
Rank 3 ) 1423.85 1in 35 724
Rank 4 4 + bonus 277.11 1in 14 290
Rank 5 4 25.94 1in772
Rank 6 3 + bonus 10.48 1in 579
Rank 7 3 6.25 1in 48
Rank 8 2 + bonus 3.75 1in64
Rank 9 1 + bonus 1.25 1in 18

Data retrieved from https://www.nationale-loterij.be/onze-spelen/lotto/statistieken
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Setting the
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@ > Physical world in which payoffs are realized

> Physical density p used to calculate expected payoffs = [ payoff - p
P-world

Expected payoff = € 0.63 = Ep(payoff Lotto)

»  Artificial setting under which one determines prices @

»  Pricing density g used to estimate prices =~ [ payoff - q

Price ticket = € 1.25 ~ E,(payoff Lotto) Q-world

©
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This master’s thesis focusses on the interplay between P and Q.

To build a bridge...
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Setting the
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This master’s thesis focusses on the interplay between P and Q.

To build a bridge...
@, oy 2

Physical density p in order to calculate Ep(payoff) = [ payoff - p

...you need bricks.

Pricing density g in order to calculate Eq(payoff) = [ payoff - g
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Estimation methods

Physical density p Pricing density g

» Backward looking » Forward looking
» One new observation each day » Multiple new observations each day



Estimation methods

Physical density p Pricing density g
» Backward looking » Forward looking
» One new observation each day » Multiple new observations each day

Is there a way to also estimate physical densities from option data?
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“All models are wrong,

but some are useful.”

- George E.P. Box




History of
pricing models

Bilateral Gamma

model
1973 1998 2019
4e) 7\
\w/ \¥/
2007
Black-Scholes- General Variance We go one step
Merton model Gamma model further!

INCREASED ACCURACY >




Tilted Bilateral Gamma model

» Extension of the Bilateral Gamma model

» Allows for the joint estimation of the physical and pricing density
from option prices

(Madan, Schoutens & Wang, 2020)



Tilted Bilateral Gamma model

» Extension of the Bilateral Gamma model

» Allows for the joint estimation of the physical and pricing density
from option prices

» Investors are risk-averse

» Investors have heterogeneous beliefs
Long positions are allowed
Short positions are allowed

(Madan, Schoutens & Wang, 2020)
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Empirical evidence in e.g. (Bakshi et al., 2010)



Tilted model

Recall s - | | .
»  Physical density: — Physical density
what you expect to get back from the instrument Pricing density
20 :
» Pricing density:
what you are willing to pay for the instrument "
Risk-aversion and heterogeneous beliefs lead to ol )
» Long investor:
wealth loss in negative return state
— loss protection leads to heavier left talil 5 -
0 . . . . . .
02 015 01 -005 0 005 01 015 0.2

Return

Empirical evidence in e.g. (Bakshi et al., 2010)



Tilted model

Recall s - | . .
»  Physical density: — Physical density
what you expect to get back from the instrument Pricing density
20 :
» Pricing density:
what you are willing to pay for the instrument "
Risk-aversion and heterogeneous beliefs lead to ol )
» Long investor:
wealth loss in negative return state
— loss protection leads to heavier left talil 5 -
» Short investor: | | | | | |
wealth loss in positive return state 90_2 015 -01 -005 O 005 01 015 02
— loss protection leads to heavier right talil Return

Empirical evidence in e.g. (Bakshi et al., 2010)



Tilted model

Recall S _ » 7 _
»  Physical density: | Physical density
what you expect to get back from the instrument Pricing density
20 + Measure change | -
» Pricing density:
what you are willing to pay for the instrument "
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Risk-aversion and heterogeneous beliefs lead to ol )
» Long investor:
wealth loss in negative return state /,/
— loss protection leads to heavier left tail 51\ .
» Short investor: ) | 4.—./ | |
wealth loss in positive return state 02 -015 -01 -005 0 005 01 015 0.2
— loss protection leads to heavier right tail Return

Empirical evidence in e.g. (Bakshi et al., 2010)



Tilted Bilateral Gamma model

Pricing density g = U-shape - physical density p
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Tilted Bilateral Gamma model

Pricing density g = U-shape - physical density p
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Data study

Tilted Bilateral Gamma
as option pricing model
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FIGURE Evolution of the RMSE over time between optimal Black-Scholes, Variance Gamma, Bilateral

Gamma and Tilted Bilateral Gamma model prices and market prices of plain-vanilla options on the S&P500
index. A calibration is conducted on each business day between January 2, 2018 and August 29, 2018.
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Option positioning

Physical density p

Calibrate Tilted ~ payout

Bilateral Gamma
Pricing density g

~ price

Consider the
p—q

model on option
data S&P500

curve —
q

~ expected return
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Applications

Option positioning

Physical density p

Calibrate Tilted ~ payout

Bilateral Gamma
Pricing density g

~ price

Consider the

curve pq;q

model on option
data S&P500

~ expected return

Price ~ E, Pq) _
q
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Applications

Option positioning:
estimation of the curve

Risk-free
Call option Put option Stock
account
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Applications
Option positioning strategy
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FIGURE

Calculations are based on option data of the
S&P500 index on January 2, 2018. The maturity is equal to 1
month.
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Option positioning strategy

Evolution of cumulative profit 5 7.0001 times the curve on 2018-01-03
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Additional application
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Applications

The risk premium
of a financial instrument

Physical density p Ep(payout)
Pricing density g Eq(payout)

Calibrate Tilted
Bilateral Gamma

Expensive
iInstrument

Cheap instrument

+




Applications

Zero-risk premium strike
of a call option

» European Call option on asset S with strike K and maturity T




Applications

Zero-risk premium strike
of a call option
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FIGURE Risk premium of the European call option with maturity T = 1 month and varying strikes with

underlying the S&P500 index on March 15, 2018. The zero-risk premium moneyness level amounts around
95.45% of the spot price.
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Zero-risk premium strike
of a call option

1n I

Average level
—— Smoothed levels

0.98 - .

Zero-risk premium moneyness level

0.88 1 '
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FIGURE Evolution over time of the zero-risk premium strike of a European call option on the S&P500
index, with a fixed maturity of 1 month. The average moneyness level amounts around 93.15%.
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Conclusion

Conclusion

» Allows for the simultaneous estimation of the physical and

pricing density from option prices Tilted

Bilateral
Gamma

»  Outperforms classic option pricing models

» Set up an option positioning strategy with theoretical cost

Option equal to 0
positioning

» Look at evolution of profit over time

» Risk premium of a call option decreases with moneyness

Risk
»  Zero-risk premium strike call option on S&P 500 index premium
situated in-the-money and rather stable over time




Conclusion
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