

Agenda

SPECIAL FOCUS

This thesis documents a probabilistic and hands on learning toolbox to guide insurers in avoiding discrimination in insurance pricing.

- 1. Legal framework
- 2. Motivating example
- 3. Probabilistic framework
- 4. Application: private motor insurance
- 5. Food for thought

Legal framework

Any discrimination based on any ground such as sex, race, colour, ethnic or social origin, genetic features, language, religion or belief, political or any other opinion, membership of a national minority, property, birth, disability, age or sexual orientation shall be prohibited

Article 21 of the EU Charter of Fundamental Rights (2017)

Belgium: Law of May 10 2007

Direct discrimination: direct distinction based on a protected criterion.

Indirect discrimination: The situation that arises when an apparently neutral provision, criterion or course of action could place persons characterized by a particular protected criterion at a particular disadvantage compared to other persons.

Important (discriminatory) characteristics for insurance pricing: Age, Disability and Gender

Exceptions are granted for discrimination when it is justified by a legitimate purpose. However **Gender** does not pass the test for an exception.

Motivating example

$n_{i,j}$	Small	Large	Row total	$e_{i,j}$	Small	Large	Row total
Female	83	14	97	Female	567	83	650
Male	47	60	107	Male	269	253	522
Column total	130	74	204	Column total	836	336	1172

Table 3.1: Fictional claim counts.

Table 3.2: Fictional exposures.

$\hat{\lambda}_{i,j}$	Small	Large
Female Male	$0.162 \\ 0.175$	$0.169 \\ 0.237$

Table 3.3: Gender discrimination: estimated claim frequencies per unit of exposure

$$\hat{\lambda}_{\bullet,0} = \frac{130}{836} = 0.156$$

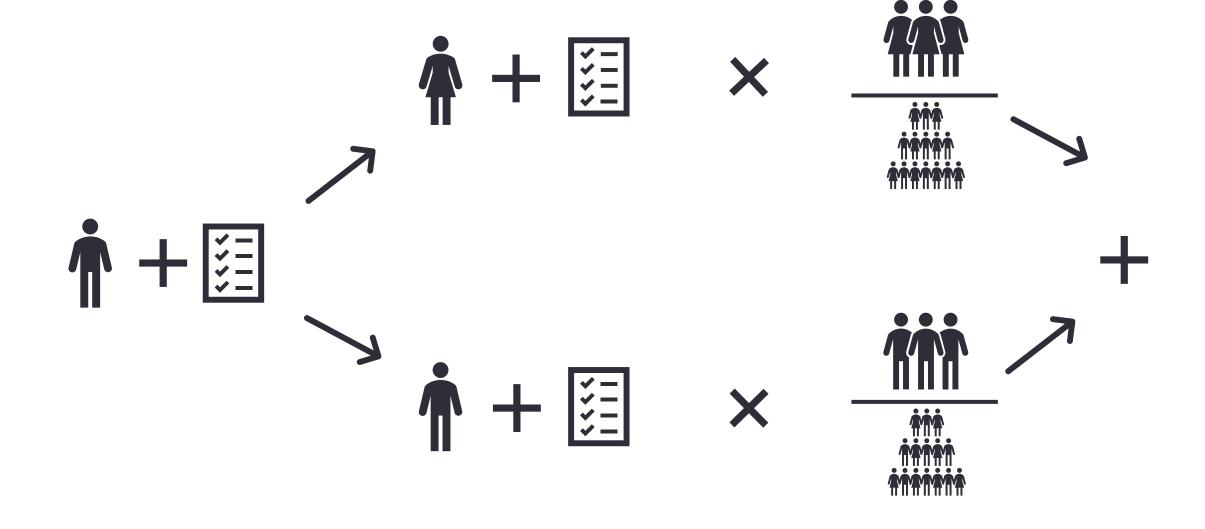
$$\hat{\lambda}_{\bullet,1} = \frac{74}{336} = 0.220. \qquad \qquad \hat{\lambda}_{\bullet,1} = \frac{n_{0,1} + n_{1,1}}{e_{0,1} + e_{1,1}} = \hat{\lambda}_{0,1} \frac{e_{0,1}}{e_{0,1} + e_{1,1}} + \hat{\lambda}_{1,1} \frac{e_{1,1}}{e_{0,1} + e_{1,1}}$$

$$= \hat{\lambda}_{0,1} \hat{\mathbb{P}}(\text{Female} | \text{Large}) + \hat{\lambda}_{1,1} \hat{\mathbb{P}}(\text{Male} | \text{Large})$$

$$= 0.169 \cdot 0.25 + 0.237 \cdot 0.75$$

$$= 0.22.$$

Solution:



$$\hat{\lambda}_{\bullet,j}^{\mathrm{DF}} = \hat{\lambda}_{0,j} \hat{\mathbb{P}}(\mathrm{Female}) + \hat{\lambda}_{1,j} \hat{\mathbb{P}}(\mathrm{Male}).$$

$$\hat{\lambda}_{\bullet,0}^{DF} = 0.162 \cdot \frac{650}{1172} + 0.175 \cdot \frac{522}{1172} = 0.168$$

$$\hat{\lambda}_{\bullet,1}^{\text{DF}} = 0.169 \cdot \frac{650}{1172} + 0.237 \cdot \frac{522}{1172} = 0.199.$$

Motivating example - intuition

Probabilistic framework

Best-estimate approach

$$\mu(\boldsymbol{X}, \boldsymbol{D}) := \mathbb{E}[Y \mid \boldsymbol{X}, \boldsymbol{D}].$$

Unawareness approach

$$\mu(\boldsymbol{X}) := \mathbb{E}[Y \mid \boldsymbol{X}].$$

$$\mu(\boldsymbol{X}) = \int_{\boldsymbol{d}} \mu(\boldsymbol{X}, \boldsymbol{d}) \, d\mathbb{P}(\boldsymbol{D} = \boldsymbol{d} \mid \boldsymbol{X}).$$

Discrimination-free approach

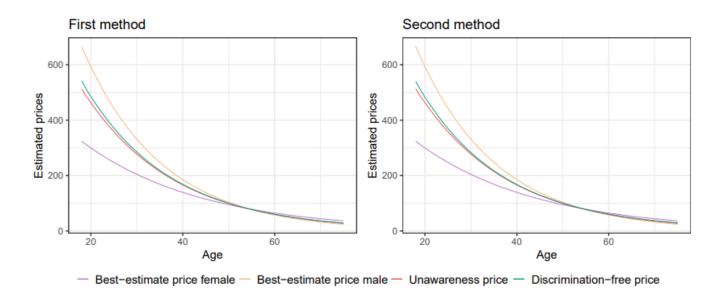
$$h^*(\boldsymbol{X}) := \int_{\boldsymbol{d}} \mu(\boldsymbol{X}, \boldsymbol{d}) d\mathbb{P}^*(\boldsymbol{D} = \boldsymbol{d}).$$

Application: Private Motor Insurance

PG15training dataset: focus on third party liability claims

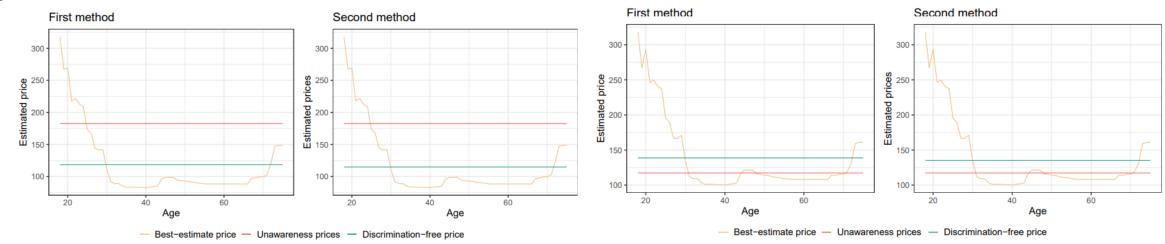
The males in dataset have a higher average frequency and severity compared to the females in the dataset

Two possible underlying models used: **GBM** and **GLM**


Possible considerations of discriminatory variable(s):

- Gender
- Gender + home region of the driver
- Age

Two types of posibilities to implement method


Application: Private Motor Insurance

Gender:

Variable	Value		
Exposure	1		
Group1	19		
Bonus	-10		
Poldur	6		
Group2	L		
Density	150		
Category	Small		
Occupation	Employed		
Type	В		

Age:

Food for thought and key takeways