

Model boosting and stacking for insurance pricing

Master thesis of Ine Fransen

Master of Actuarial and Financial Engineering

Prof. Dr. K. Antonio, Ir. R. Henckaerts

Ensemble approaches combine different models

Goals of the thesis

- Present the concept of model boosting
- Present the concept of stacking
- Compare model performance and interpretability

Apply to car

insurance pricing

Portfolio in non-life insurance

https://www.vectorstock.com/royalty-free-vector/cars-driver-cartoon-collection-set-vector-14066666

Motor Third Party Liability (MTPL) data 1997

Calculation of the premium

- Selection of relevant variables
- Different types of risk factors
- Interpretability of the pricing model
- Distribution of the target variable

Demand for flexible yet explainable models

Model Boosting

Model Boosting

- Base-learners:
 - Linear effects: e.g. β sex
 - **Smooth effects:** e.g. $\sum_{j=1}^{t} B_j(age,q)$
 - **Tree-based** effects: e.g. $\sum_{j=1}^{J_1} \hat{y}_{R_j} \mathbb{I}(age \in R_j)$
- Automatic variable selection!

Three boosting models for claim frequency

- Smooth model
- Tree model
- Hybrid model

Smooth base-learners: continuous risk factors & spatial effect

Tree-based base-learners: categorical risk factors & interactions

Training and test set

Comparison with GLM

- Boosting can be more accurate
- Boosting is computationally costly
- Interpretability of boosting can be increased using
 - variable importance
 - partial dependence plots

Variable importance

Approach for automatic binning

Four different models are stacked

- GLM
- GBM
- XGBoost
- Random Forest

Comparison

- Better accuracy than single models (GLM, Boosting models,...)
- Reduced interpretability
 - Variable portance
 - Partial dependence plots
- Increased computation time
- Overkill?

Variable importance

Variable Importance: DRF

Variable Importance: XGBOOST

Partial dependence plots

Conclusion

Future prospects

- Increased data size and complexity
- More powerful machines

Thank you for your attention!