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Ensemble approaches combine different models

Ensemble Model 
(e.g. Model Boosting, Stacking)



• Present the concept of model boosting

• Present the concept of stacking

• Compare model performance and interpretability
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Goals of the thesis 

Apply to car 
insurance pricing 
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Portfolio in non-life insurance 

https://www.vectorstock.com/royalty-free-vector/cars-driver-cartoon-collection-set-vector-14066666

Construction of a 
pricing model

https://www.vectorstock.com/royalty-free-vector/cars-driver-cartoon-collection-set-vector-14066666
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Motor Third Party Liability (MTPL) data 1997
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Calculation of the premium

Frequency Severity



• Selection of relevant variables

• Different types of risk factors

• Interpretability of the pricing model

• Distribution of the target variable 
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Challenges



StackingModel 
BoostingGAMGLM
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Demand for flexible yet explainable models

Explainable Black Box

FLEXIBILITY
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Model Boosting
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Model Boosting

• Base-learners: 

• Linear effects:  e.g. !"#$

• Smooth effects:  e.g. ∑&'() *& +,#, .

• Tree-based effects:  e.g.  ∑&'(/0 12345(+,# ∈ 8&)

• Automatic variable selection! 



• Smooth model

• Tree model

• Hybrid model
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Three boosting models for claim frequency

Smooth base-learners: continuous risk factors & 
spatial effect

Tree-based base-learners: categorical risk factors & 
interactions
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Training and test set 



• Boosting can be more accurate

• Boosting is computationally costly

• Interpretability of boosting can be increased using

• variable importance

• partial dependence plots 
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Comparison with GLM



Faculty of Economics and Business14

Variable importance
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Partial dependence plots
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Approach for automatic binning
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Stacking
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• GLM

• GBM

• XGBoost

• Random Forest
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Four different models are stacked



• Better accuracy than single models (GLM, Boosting models,...) 

• Reduced interpretability

• Variable importance

• Partial dependence plots 

• Increased computation time

• Overkill? 
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Comparison



Faculty of Economics and Business20

Variable importance
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Partial dependence plots



Faculty of Economics and Business22

Conclusion 

Stacking

Model Boosting

GLM

NEED FOR 
COMPUTATIONAL 

POWER

ACCURACY INTERPRETABILITYFLEXIBILITY



• Increased data size and complexity 
• More powerful machines
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Future prospects

More complex models

Accuracy Interpretation



Thank you for your attention! 


